Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility

Jingbi You,† Ziruo Hong,†,* Yang (Michael) Yang,† Qi Chen,† Min Cai,† Tze-Bin Song,† Chun-Chao Chen,† Shirong Lu,† Yongsheng Liu,† Huanping Zhou,†,* and Yang Yang†‡,*

†Department of Materials Science and Engineering and ‡California NanoSystems Institute, University of California—Los Angeles, Los Angeles, California 90095, United States

ABSTRACT Perovskite compounds have attracted recently great attention in photovoltaic research. The devices are typically fabricated using condensed or mesoporous TiO2 as the electron transport layer and 2,2′,7,7′-tetrakis-(N,N-dip-methoxyphenylamine)9,9′-spirobiﬂuorene as the hole transport layer. However, the high-temperature processing (450 °C) requirement of the TiO2 layer could hinder the widespread adoption of the technology. In this report, we adopted a low-temperature processing technique to attain high-efficiency devices in both rigid and flexible substrates, using device structure substrate/ITO/PEDOT:PSS/CH3NH3PbI3xClx/PCBM/Al, where PEDOT-PSS and PCBM are used as hole and electron transport layers, respectively. Mixed halide perovskite, CH3NH3PbI3xClx, was used due to its long carrier lifetime and good electrical properties. All of these layers are solution-processed under 120 °C. Based on the proposed device structure, power conversion efficiency (PCE) of 11.5% is obtained in rigid substrates (glass/ITO), and a 9.2% PCE is achieved for a polyethylene terephthalate/ITO ﬂexible substrate.

KEYWORDS: perovskite solar cells · low temperature · planar structure · ﬂexible solar cells

Perovskite semiconductors have attracted tremendous attention1-2 beginning with their incorporation into photovoltaic devices by Miyasaka et al. in 2009,3 achieving an initial power conversion efficiency (PCE) of 4%. In 2012, significant progress was realized in perovskite solar cells, with several groups reporting over 10% PCE by employing mesoporous nanostructures,4-10 attracting great attention in the field of photovoltaics.11-16 More recently, it was observed that perovskite materials exhibit long charge carrier lifetimes and thus can be used for planar junctions.17,18 In fact, both the solution and coevaporation processing approaches showed up to a 11.419 and 15%20 PCE, respectively, incorporating a planar structure. However, it has been recognized that, in the perovskite-based photovoltaic cells, a high-quality condensed TiO2 layer often requires high-temperature treatment above 450 °C. Such extreme processing conditions could limit the future development of perovskite solar cells, particularly in flexible formats. It is therefore critical to explore the possibility of fabricating high-performance perovskite-based solar cells at low temperature. In addition, a low-temperature processing approach offers a wider selection of potential substrates and electrode materials that could be used in devices, including polymer-based flexible substrates and solution-processed interfacial materials that could thereby be incorporated into perovskite photovoltaic cells. A few groups have attempted to fabricate all low-temperature processed perovskite solar cells using different transport layer processing.21-23 However, the resultant device efficiency is notably inferior compared to high-temperature processed TiO2. The efficiency losses in the low-temperature processed perovskite solar cells originate mainly due to charge recombination at imperfect interfaces and structural or chemical defects in perovskite films.

In this article, we explore the possibility of fabricating perovskite-based solar cells via a low-temperature (<120 °C) solution-processing approach. We obtain 11.5% PCE based on a glass/ITO rigid substrate, which is
comparable to what is obtained with high-temperature approaches. For the polyethylene terephthalate (PET)/ITO flexible substrates, over 9% PCE has been demonstrated. In addition, we have studied the charge transport properties between perovskite and n/p buffer layer and also investigated the materials properties of CH₃NH₃PbI₃.

RESULTS AND DISCUSSION

The device structure is shown in Figure 1a (starting from the bottom: glass/ITO substrate, hole transport layer PEDOT:PSS, perovskite photoactive layer, and PCBM electron transport layer, with a final Al electrode deposited via thermal evaporation). The top-view and cross-section scanning electron microscopy (SEM) images of the CH₃NH₃PbI₃ Cl₃ film on the PEDOT:PSS layer are shown in Supporting Information Figure SI-1. The results reveal that the perovskite film is uniform despite some pinholes, and after coating PCBM on the top of the perovskite layer, the surface appears smooth and fully covered by PCBM, which is shown in the top-view SEM images in Figure SI-2. The cross-section SEM images of devices without the Al electrode shown in Figure 1b show a well-defined layer-by-layer structure with sharp interfaces. The thicknesses of the PEDOT:PSS, perovskite, and PCBM layers are 40, 340, and 110 nm, respectively. Here, the thickness of the CH₃NH₃PbI₃ Cl₃ layer is sufficient to serve as the light-absorbing layer. Moreover, charge extraction from the photoactive layer is still efficient due to the long carrier lifetime and good carrier transport properties. For the same reason, the perovskite layer used here, CH₃NH₃PbI₃ Cl₃, is allowed to be much thicker than previously reported CH₃NH₃PbI₃ thicknesses, ensuring sufficient light absorption, which is the first decisive factor for optimal device performance.

The X-ray diffraction (XRD) pattern of CH₃NH₃PbI₃ Cl₃ is shown in Figure SI-2, where the perovskite material without Cl⁻ anions (CH₃NH₃PbI₃) is compared with the CH₃NH₃PbI₃ Cl₃ investigated herein. It was found that the XRD patterns of the two materials are almost identical, suggesting that the Cl⁻ anion does not alter the crystalline structure. In addition, the film is highly orientated along the (110) direction. Considering the similar diffraction patterns of CH₃NH₃PbI₃ Cl₃ and CH₃NH₃PbI₃, it strongly suggests that only a little Cl has been incorporated into the perovskite materials.

To investigate the atomic ratios in CH₃NH₃PbI₃ Cl₃, especially of I and Cl, X-ray photoelectron spectroscopy (XPS) measurements were performed. The full XPS spectra of the materials are shown in Figure 2a, and the I 3d and Cl 2p core energy level spectra are shown in Figure 2b,c, respectively. It can be calculated that C/(Cl + I) is 2.2% in CH₃NH₃PbI₃ Cl₃, which is surprisingly small and much lower than the composition stoichiometry in the precursor solution. We have measured the Cl in several samples from the same batch, and all of the results showed that the amount of Cl in CH₃NH₃PbI₃ Cl₃ is very small or under the limitation of the XPS instrument. Even though Cl⁻ anions play important roles in perovskite compounds in the dynamics of excitons and/or charge carrier transport. Literature shows that Cl content improves the lifetime and/or enhances the charge mobility of perovskite materials; however, the underlying mechanism on why Cl plays a positive role in the photovoltaic cells remains unclear. To investigate charge carrier (or excitons) behavior in CH₃NH₃PbI₃ Cl₃ films, we measured the valence band maximum (VBM, distance from valence band to Fermi level) as shown in Figure 2d. The energy difference between the Fermi level and the valence band edge is about 1.1 eV, with the band gap of perovskite material approximately 1.5 eV (the band gap value is estimated from the absorption band edge of the perovskite film in Figure SI-4). Therefore, the Fermi level of the perovskite film lies closer to the conduction band edge than that of the valence band edge, indicating that the perovskite is a weak n-type or intrinsic semiconductor. Etgar et al. have reported that CH₃NH₃PbI₃ shows a p-type behavior. These results are very interesting and different from our present...
results, which may be from different experimental conditions, indicating that the perovskite material properties could be tuned by processing parameters.

Because the electrical buffer layers, PEDOT:PSS as hole transport layer and PCBM as electron transport layer, can extract free carriers and dissociate excitons into free charges, we measure charge generation of the perovskite photovoltaic cells via photoluminescence (PL) and time-resolved photoluminescence (TRPL) characterization. The PL of CH$_3$NH$_3$PbI$_3$-Cl, PEDOT:PSS/CH$_3$NH$_3$PbI$_3$-Cl, CH$_3$NH$_3$PbI$_3$-Cl/PCBM, and PEDOT:PSS/CH$_3$NH$_3$PbI$_3$-Cl/PCBM on glass substrates was measured. The excitation light enters the sample from the glass substrate side with an incidental angle of 30°, and PL emission is collected from the glass substrate side, as well. From the PL data, we observed a significant quenching effect when the perovskite layer establishes contact with either the PEDOT:PSS or the PCBM layer. The PCBM-coated perovskite film shows completely quenched PL, and the PEDOT:PSS-based sample exhibits roughly 10% PL, indicating that charge generation is possible at both interfaces, with carrier generation at the perovskite/PEDOT:PSS interface slightly less than the perovskite/PCBM interface. (It has to be mentioned that the different substrate might also affect the growth of perovskite. Thus, glass or glass coated with PEDOT:PSS layer substrates could lead to different PL behavior. Therefore, the PL quench behavior between PEDOT:PSS and the perovskite layer is hard to accurately define.) To further confirm these charge transport processes, the time-resolved photoluminescence has been measured and is shown in Figure 3b. Fitting the data with two exponential decay curves (here, the longer lifetime was used for comparison) yields the lifetime of carriers and/or excitons. For the perovskite neat film, a PL lifetime as high as 200.1 ns was observed, consistent with previous reports, the long lifetime is tentatively ascribed to the Cl doping effect. This long lifetime is essential for longer exciton/carrier diffusion lengths to allow large film thicknesses for light harvesting. When the perovskite film forms a contact with PEDOT:PSS or PCBM, it was observed that the PL lifetime is reduced significantly. For the PEDOT:PSS case, the lifetime decreases to 50 ns, and when coating the PCBM layer on the perovskite layer, the carrier lifetime further drops to 25.4 ns, indicating that charge transfer from perovskite to PCBM could be faster than that of the PEDOT:PSS. Considering the strong quenching effect of PEDOT:PSS and PCBM to the PL emission from the perovskite layer, the PL lifetime of the PEDOT:PSS/perovskite layer/PCBM further decreases to 18 ns. We propose that the PL quenching is caused by fast charge transfer at the interface, which may be the mechanism of charge separation and collection in these devices.

Figure 4a shows the device performance of the control device using the device structure ITO/PEDOT:PSS/perovskite/PCBM layer. Specifically, the open circuit voltage (V_{OC}) is 0.87 V, the short circuit current (J_{SC}) is 18.5 mA/cm2, and filling factor (FF) is 72% with 11.5% power conversion efficiency based on the employed simple device structure. In addition, we noticed that our devices exhibit high reproducibility, with the
average efficiency of the devices being above 10%, with the \(V_{OC} \) ranging from 0.80 to 0.88 V, the \(J_{SC} \) varies from 16.5 to 19 mA/cm\(^2\), and the FF ranges from 65 to 74%. These are the best results based on fully low-temperature processed devices. The photovoltaic performance is directly related to good morphology, long carrier lifetime, and enhanced charge transport properties. It is worth mentioning that the thickness of PCBM is very critical for achieving high performance. On one hand, if the PCBM layer is too thin, it will not fully cover the perovskite layer, the electrode layer, for example, Al, will directly contact with perovskite layer; on the other hand, if the PCBM is too thick, the series resistance of the device will be increased due to the low conductivity of PCBM. Both of them will lead to inferior device performance.

Compared to previous results based on CH\(_3\)NH\(_3\)PbI\(_3\) \(_x\)Cl\(_x\) fabricated through evaporation,\(^{20}\) our devices showed comparable short circuit currents, as well as high filling factors, indicating that the hole—electron transport balance is close to perfect. With the highest \(V_{OC} \) for perovskite solar cells reaching above 1 V,\(^{8,20}\) our device demonstrated the \(V_{OC} \) around 0.84 ± 0.04 V. This difference could be due to the voids in the perovskite layer, causing leakage current and induced recombination. These issues can be further addressed with improved morphology, possibly reaching power conversion efficiencies above 12%.

Moreover, the contact between the perovskite and buffer layers could be further improved by choosing materials with suitable energy levels to the perovskite layer. In addition to using PCBM as an electron transport layer (ETL), ZnO was also tested as the electron transport layer\(^{26}\) in low-temperature processed perovskite solar cells. The device performance using PCBM and ZnO showed similar device performance (\(J-V \) curve of the devices using ZnO as ETL is shown in Figure SI-5). The external quantum efficiency of this device could be further improved by optical engineering such as light trapping\(^{27}\) or plasmonic effects.\(^{28–30}\)

To investigate charge recombination in low-temperature processed perovskite solar cells, light intensity dependence was measured. Figure 5a shows the \(J-V \) curve under different light intensities ranging

![Figure 3. (a) Photoluminescence of CH\(_3\)NH\(_3\)PbI\(_3\) \(_x\)Cl\(_x\), PEDOT:PSS/CH\(_3\)NH\(_3\)PbI\(_3\) \(_x\)Cl\(_x\), CH\(_3\)NH\(_3\)PbI\(_3\) \(_x\)Cl\(_x\)/PCBM, and PEDOT:PSS/CH\(_3\)NH\(_3\)PbI\(_3\) \(_x\)Cl\(_x\)/PCBM on glass substrate. (b) Time-resolved photoluminescence of CH\(_3\)NH\(_3\)PbI\(_3\) \(_x\)Cl\(_x\), PEDOT:PSS/CH\(_3\)NH\(_3\)PbI\(_3\) \(_x\)Cl\(_x\), CH\(_3\)NH\(_3\)PbI\(_3\) \(_x\)Cl\(_x\)/PCBM, and PEDOT:PSS/CH\(_3\)NH\(_3\)PbI\(_3\) \(_x\)Cl\(_x\)/PCBM. Symbols are measurement results; solid lines are two exponential fits.](#)

![Figure 4. (a) \(J-V \) curve of the devices on rigid glass/ITO substrate under 1 sun illumination (100 mW/cm\(^2\)). The dark curve of the device is also included. (b) External quantum efficiency of the devices; the integrated short circuit current is 17.2 mA/cm\(^2\).](#)
from 0.027 to 9.73 sun. The corresponding photovoltaic parameters such as \(J_{SC} \), \(V_{OC} \), and FF dependence on the light intensity are plotted in Figure 5b–d, respectively. Results show that \(J_{SC} \) is linear with light intensity, indicating no significant energy barrier in the devices. From the relationship between \(\delta V_{OC} \sim \ln(l) \), the slope of the fitting curve is 0.056, close to 0.052 (2\(k_B T / q \)), indicating that the main recombination mechanism in the devices is free carrier recombination.\(^{31}\) The FF is 43% at about 10 sun illumination and can be as high as 75% under low light intensity (~0.1 sun), indicating reduced recombination due to the decrease of free charge carrier concentration.\(^{32}\) The power conversion efficiency dependence on light intensity is shown in Figure S1-6. Results show that the power conversion efficiency of the devices can be increased from 10.4 to 10.9%. (It should be noted that the device used for the light-dependent measurement is not our best device.) The original photovoltaic parameters are \(V_{OC} = 0.88 \text{ V}, J_{SC} = 17.5 \text{ mA/cm}^2, \text{ FF} = 67.6\% \), and PCE = 10.4%.

We have achieved high device performance based on low-temperature (less than 120 °C) solution-processed perovskite solar cells, suggesting that it is also possible to attain high device performance of flexible solar cells based on the processing techniques utilized. Here, we replaced the rigid glass/ITO substrate with a flexible PET/ITO substrate and fabricated the devices via the same procedures. A photograph of the flexible device is shown in Figure 6a. The flexible device shows \(V_{OC} \) of 0.86 V, \(J_{SC} \) of 16.5 mA/cm\(^2\), and FF of 64%. Furthermore, power conversion efficiency of 9.2% is achieved, keeping 80% of the rigid devices' performance. In comparison with the rigid devices, the loss in PCE arises from the decreased \(J_{SC} \) and FF, which could be due to the higher series resistance of the flexible devices, issues that could be solved in the near future. For the flexible structure, we also tested the
effects of mechanical bending on device performance; the devices’ performance after bending is also included in Figure 6b. Results show that the device maintains its performance through mechanical bending up to 20 times, indicating that our devices tolerate repeated mechanical deformation.

CONCLUSIONS AND PROSPECTS

In conclusion, we have demonstrated low-temperature solution-processed perovskite solar cells. The device performance achieved is comparable to that found for conventional high-temperature processing approaches. We achieved 11.5% power conversion efficiency in a rigid substrate devices and a 9.2% efficiency in flexible devices based on this processing approach. The imperfection in the morphology of the perovskite layer induces recombination and Voc loss. Further improvements could be achieved by fine-tuning the layer morphology. In organic solar cell areas, annealing, slow growth, additive, and other approaches have been successfully used to tune the morphology. We think we can borrow these ideas and apply it in perovskite solar cells research area.

EXPERIMENTAL SECTION

Materials and Characterizations. PbCl₂ was purchased from Alfa Aesar. The material CH₃NH₃I was synthesized in our lab using the approach outlined in ref 36. PEDOT:PS and PCBM were purchased from Clevious and Nano-C, respectively. ZnO was synthesized based on the recipe in ref 26. The PbCl₂ nanoparticles were synthesized in methanol and dispersed in 3 wt % chlorobenzene. The X-ray diffraction patterns were collected on a PANalytical X’Pert Pro X-ray powder diffractometer using Cu Kα radiation (λ = 1.54056Å). The scanning electron microscope images were taken on a JEOL JSM-6700F. Steady-state photoluminescence was measured by Horiba Jobin Yvon system with an excitation at 600 nm. In the time-resolved photoluminescence measurement, the samples were excited by a pulsed laser (PDL 800-B system with an extended trigger) with a wavelength and frequency of 632 nm and 10 Hz, respectively. The PL photons were counted by Picoharp 300 after preamplification by PAM 102. (It has to be mentioned that the perovskite samples for photoluminescence were prepared in air environment). X-ray photoelectron spectroscopy was carried out in Kratos DLD XPS system. For XPS measurement, due to some charge effect, we use C 1s for calibration.

Device Fabrication and Measurement. PEDOT:PSS was spin-coated on an ITO surface under 4000 rpm and then annealed at 120 °C for 15 min. For the perovskite layer, a 1:3 ratio of PbCl₂/CH₃NH₃I was mixed. Specifically, the concentration of the PbCl₂ and CH₃NH₃I were 0.8 and 2.4 M. The solution was spin-coated onto the PEDOT:PSS layer at 1500 rpm and then annealed at 90 °C for 2 h. After that, 2% PCBM in chlorobenzene solution was spin-coated onto the perovskite layer at 1000 rpm. Finally, the device was transferred to a vacuum chamber for Al electrode evaporation. Glass/ITO and PEDOT:PSS/Al substrates were used for rigid and flexible devices. The device area is 0.1 cm². J–V characteristics of photovoltaic cells were taken using a Keithley 2400 source measure unit under a simulated AM1.5G spectrum. With an extended trigger) with a wavelength and frequency of 632 nm and 10 Hz, respectively. The PL photons were counted by Picoharp 300 after preamplification by PAM 102. (It has to be mentioned that the perovskite samples for photoluminescence were prepared in air environment). X-ray photoelectron spectroscopy was carried out in Kratos DLD XPS system. For XPS measurement, due to some charge effect, we use C 1s for calibration.

Supporting Information Available: SEM images of perovskite film before and after coating PCBM layer, XRD, CH₃NH₃PbI₃/CH₃NH₃PbCl₃ and CH₃NH₃PbI₃/CH₃NH₃PbBr₃ absorption of CH₃NH₃PbI₃, CH₃NH₃PbCl₃ with and without PCBM layer, J–V curve of the low-temperature processed perovskite solar cells with glass/ITO/PEDOT:PSS/CH₃NH₃PbI₃/CH₃NH₃PbCl₃/ZnO/Al, and the relationship between power conversion efficiency with light intensity. This material is available free of charge via the Internet at http://pubs.acs.org.

REFERENCES AND NOTES

